Hartogs Type Extension Theorems
نویسنده
چکیده
Let ∆ ⊆ C be the open unit disc and let Σ ⊆ ∆×∆ be a compact set such that K = Σ ∪ (∂∆×∆) is a connected set. It is a classical result by Hartogs that if Σ is an analytic variety over ∆ with the boundary in ∂∆×∆, then every function holomorphic in a connected neighbourhood of K extends holomorphically to a neighbourhood of ∆ × ∆. It is proved that the same conclusion holds if Σ is a ‘continuous’ variety over ∆. In adition, the extension property is also proved in some cases where Σ is not connected, but one can not directly use previously known results for any connected component of Σ.
منابع مشابه
Hartogs Type Theorems on Coverings of Stein Manifolds
We prove an analog of the classical Hartogs extension theorem for certain (possibly unbounded) domains on coverings of Stein manifolds.
متن کاملHartogs Type Theorems for CR L functions on Coverings of Strongly Pseudoconvex Manifolds
We prove an analog of the classical Hartogs extension theorem for CR L2 functions defined on boundaries of certain (possibly unbounded) domains on coverings of strongly pseudoconvex manifolds. Our result is related to a question formulated in the paper of Gromov, Henkin and Shubin [GHS] on holomorphic L2 functions on coverings of pseudoconvex manifolds.
متن کاملHartogs Type Theorems on Coverings of Strongly Pseudoconvex Manifolds
We prove an analog of the classical Hartogs extension theorem for certain (possibly unbounded) domains on coverings of strongly pseudoconvex manifolds. Our result is related to a problem posed in the paper of Gromov, Henkin and Shubin [GHS] on holomorphic L2 functions on coverings of pseudoconvex manifolds. Previously in [Br3] similar results were established for some domains on coverings of St...
متن کاملTowards Oka-cartan Theory for Algebras of Holomorphic Functions on Coverings of Stein Manifolds Ii
We establish basic results of complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds (such as algebras of Bohr’s holomorphic almost periodic functions on tube domains or algebras of all fibrewise bounded holomorphic functions arising, e.g., in the corona problem for H). In particular, in this context we obtain results on holomorphic extension fr...
متن کاملTowards Oka-cartan Theory for Algebras of Fibrewise Bounded Holomorphic Functions on Coverings of Stein Manifolds I
We develop complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds. This, in particular, includes the topics of holomorphic extension from complex submanifolds, corona type theorems, properties of divisors, holomorphic analogs of the Peter-Weyl approximation theorem, Hartogs type theorems, characterization of uniqueness sets. Our model examples c...
متن کامل